Yb:YAG

Introduction

Yb:YAG is one of the most promising laser-active materials and more suitable for diode-pumping than the traditional Nd-doped systems. Compared with the commonly used Nd:YAG crystal, Yb:YAG crystal has a much larger absorption bandwidth to reduce thermal management requirements for diode lasers, a longer upper-laser level lifetime, three to four times lower thermal loading per unit pump power. Yb:YAG crystal at 1030nm is a good substitute for a Nd:YAG crystal at 1064nm and its second harmonic at 515nm may replace Ar-ion laser (with a large volume), which emit at 514nm.

Advantages of Yb:YAG Crystal

- Very low fractional heating, less than 11%
- Very high slope efficiency
- Broad absorption bands, about 8nm@940nm
- No excited-state absorption or up-conversion
- Conveniently pumped by reliable InGaAs diodes at 940nm(or 970nm)
- High thermal conductivity and large mechanical strength
- High optical quality

Material and Specifications

Dopant Concentration	Yb: 5~15 at%
Wavefront Distortion	$\leq 0.125\lambda$ /inch
Extinction Ratio	≥28 dB
Rod Sizes	Diameter:2~20mm, Length:5~150mm Upon request of customer
Dimensional Tolerances	Diameter:+0.00"/-0.002"mm, Length: \pm 0.02"
Barrel Finish	Ground Finish: 400# Grit
Parallelism	≤10"
Perpendicularity	≤5′
Flatness	λ/10
Surface Quality	10-5(MIL-PRF-13830B)
Chamfer	$0.006" \pm 0.002"$ at $45^{\circ} \pm 5^{\circ}$
AR Coating Reflectivity	≤ 0.25% (@1030nm)
Single Pass Loss	<3×10 ⁻³ cm ⁻¹

Laser Transition	$^{2}\mathrm{F}_{5/2} \rightarrow ^{2}\mathrm{F}_{7/2}$
Laser Wavelength	1030nm
Photon Energy	1.93×10 ⁻¹⁹ J(@1030nm)
Emission Linewidth	9nm
Emission Cross Section	2.0×10 ⁻²⁰ cm ²
Fluorescence Lifetime	1.2 ms
Diode Pump Band	940nm or 970nm
Pump Absorption Band Width	8 nm
Index of Refraction	1.82
Thermal Optical Coefficient	9×10 ^{-6/0} C
Loss Coefficient	0.003 cm ⁻¹